The following errata were made on 13/May/2020

page 375 ANSWERS EXERCISE 4E Question 3 f, should read as originally printed:

3 f \approx 105.3 \text{ cents per litre}

The following erratum was made on 28/Apr/2020

page 373 ANSWERS EXERCISE 4B Question 4 c, should read as originally printed:

4 c There is a strong, negative, non-linear correlation between number of workers and time.

The following errata were made on 19/Sep/2019

page 390 ANSWERS EXERCISE 7F Question 5 a, should read:

5 a 25 years 5 months b $3693.84 per month

page 390 ANSWERS REVIEW SET 7A Question 15 a, should read:

15 a 8 years 8 months b $2996.23

page 391 ANSWERS EXERCISE 8C.2 Question 2 b, should read:

2 a $2001.09 b 24 years 8 fortights

page 392 ANSWERS REVIEW SET 8A Question 2 b, should read:

6 a \approx 6.55\% \text{ p.a.} b $213938.75 c 21 years 5 months

page 399 ANSWERS REVIEW SET 9A Question 2, should have no edge connecting A and E:

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) {A};
\node (B) at (-1,1) {B};
\node (C) at (1,1) {C};
\node (D) at (-1,-1) {D};
\node (E) at (1,-1) {E};
\draw (A) -- (B);
\draw (A) -- (C);
\draw (A) -- (D);
\draw (A) -- (E);
\end{tikzpicture}
\end{center}

The following errata were made on 11/Sep/2019

page 66 EXERCISE 3D.1 Question 4, should read:

4 For the sequence $t_1 = 3$, $t_{n+1} = 2t_n + 2$, $n \geq 1$, find the first term which is greater than 100.
The population of bacteria after any given hour is \(2\) times that of the previous hour. So \(r = 2\).

The population after 1 hour is \(2 \times 5000 = 10000\).

So \(f_1 = 10000\).

\[t_n = 10000 \times 2^{n-1} = 5000 \times 2^n \]

The following errata were made on 02/Sep/2019

ANSWERS EXERCISE 4D Question 1, should read:

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{Time (days)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\text{Number of customers} & 12 & 15 & 11 & 19 & 15 & 12 & 15 \\
\text{3-point moving average} & 12.7 & 15 & 15 & 15.3 & 14 & 14.3 & \\
\end{array}
\]

ANSWERS EXERCISE 4G Questions 5 a and e, should be given to 3 significant figures:

5 a \(V \approx 8040 \times (0.748)^t \)
5 b \(\approx 1880 \)
5 c \(\approx 25.2\% \)
5 d \(\approx 7.18\text{ years} \)

ANSWERS EXERCISE 6D Question 4 b, should read:

4 a \(E \approx 0.0734t + 16.4 \)
4 b \(\approx 18.6\text{ tonnes per capita} \)

ANSWERS EXERCISE 6D Question 5 e ii, should read:

5 d \(S \approx 1.77t + 124 \)
5 e i \(\approx 135000 \)
5 e ii \(\approx 125000 \)

ANSWERS EXERCISE 6D Question 6 f ii, should read:

6 e \(S \approx 0.0376t + 43.9 \)
6 f i \(\approx 43900 \)
6 f ii \(\approx 41900 \)

ANSWERS REVIEW SET 6A Question 2, should read:

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{Time (days)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\text{Number of customers} & 12 & 15 & 11 & 19 & 15 & 12 & 15 \\
\text{3-point moving average} & 12.7 & 15 & 15 & 15.3 & 14 & 14.3 & \\
\end{array}
\]

The following errata were made on 02/Sep/2019

ANSWERS REVIEW SET 3B Question 7 a, should read:

7 a The population of bacteria after any given hour is 2 times that of the previous hour. So \(r = 2\).

The population after 1 hour is \(2 \times 5000 = 10000\).

So \(f_1 = 10000\).

\[t_n = 10000 \times 2^{n-1} = 5000 \times 2^n \]

ANSWERS EXERCISE 4E Question 6 f ii, should read:

6 f i 9 hours per week
6 f ii \(\approx 7.19\text{ hours per week} \)

This particular child spent more time watching television than predicted.

ANSWERS EXERCISE 6B Question 6 b, should have correct x-axis label:

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{Time (days)} & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
\hline
\text{Maximum temperature (°C)} & 16 & 20 & 24 & 28 & \\
\end{array}
\]
The value in the connectivity matrix C^4 (30) includes routes which revisit cities, such as Am \rightarrow Be \rightarrow Pr \rightarrow Be \rightarrow Am, and includes distinct routes which visit the same combinations of cities, such as Am \rightarrow Pa \rightarrow Br \rightarrow Co \rightarrow Am and Am \rightarrow Co \rightarrow Br \rightarrow Pa \rightarrow Am.
Example 8

Gavin has taken out a loan for $300,000 at 4.9% p.a. interest compounded monthly for 20 years. His monthly repayments are set at $1963.34. He has an average of $10,000 in his offset account for the term of the loan.

Estimate the amount of interest Gavin will save by having the offset account.

Having $10,000 in an offset account for the term of a $300,000 loan is equivalent to borrowing $290,000.

We first find the time Gavin would take to repay the loan.

\[I\% = 4.9, \quad PV = 290,000, \quad PMT = -1963.34, \quad FV = 0, \quad P/Y = 12, \quad C/Y = 12 \]

\[N \approx 226.8 \]

It will take 227 months, or 18 years 11 months to repay the loan.

We now find the future value of the loan after 227 months:

\[N = 227 \]
\[I = 4.9 \]
\[PV = 290,000 \]
\[PMT = -1963.34 \]
\[FV = 16,918,598 \]
\[P/Y = 12 \]
\[C/Y = 12 \]

\[\therefore \text{interest saved} \approx 471,201.60 - 455,264.26 \]
\[\approx 15,937 \]
The following erratum was made on 22/Mar/2018

page 373 ANSWERS EXERCISE 4B Question 4 e, should read:

4 e There is a strong, negative, \textit{linear} correlation between number of workers and time.

This erratum was made in error, please disregard it.

page 390 ANSWERS EXERCISE 7E.2 Questions 6 c and 7 c, should read:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>a</td>
<td>$66.354.49</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>$56.020.65</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>$3.40%$ p.a.</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>$22.444.54</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>$22.110.15</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>$0.500%$ p.a.</td>
</tr>
</tbody>
</table>

page 391 ANSWERS EXERCISE 8C.6 Questions 1 and 2 b, should read:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$26.500</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>$2101.07</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

page 392 ANSWERS REVIEW SET 8B Question 7, should read:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$23.300</td>
</tr>
</tbody>
</table>

The following erratum was made on 22/Mar/2018

page 391 ANSWERS EXERCISE 8C.6 Questions 1 and 2 b, should read:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$26.500</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>$2101.07</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

page 392 ANSWERS REVIEW SET 8B Question 7, should read:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$23.300</td>
</tr>
</tbody>
</table>
The following erratum was made on 18/Sep/2017

page 383 ANSWERS EXERCISE 5C Question 7, should read:

7 ≈ 59.6 minutes 8 ≈ 24.7 cm 9 ≈ 75.2 mm

The following erratum was made on 27/Feb/2017

page 375 ANSWERS EXERCISE 4E Question 3 d, should read:

3 a $r \approx -0.924$
 b There is a strong, negative, linear correlation between the petrol price and the number of customers.
 c $y \approx -4.27x + 489$
 d ≈ -4.27; this indicates that for every cent per litre the petrol price increases by, the number of customers will decrease by approximately 4.27.