ERRATA
MATHEMATICS FOR AUSTRALIA 11
Specialist Mathematics
Worked Solutions

First edition - 2016

The following errata was made on 11/May/2020

page 247 EXERCISE 6E, question 2 should read:

2 \(P_n \) is: The product of \(n \) odd integers is odd for all \(n \in \mathbb{Z}, \ n \geq 2 \).

Proof: (By the principle of mathematical induction)

(1) Let \(p_1 \) and \(p_2 \) be odd integers.
Then there exist \(q_1, q_2 \in \mathbb{Z} \) such that \(p_1 = 2q_1 + 1 \) and \(p_2 = 2q_2 + 1 \).
Now \(p_1p_2 = (2q_1 + 1)(2q_2 + 1) \)
\[= 4q_1q_2 + 2q_1 + 2q_2 + 1 \]
\[= 2(2q_1q_2 + q_1 + q_2) + 1 \quad \text{which is odd.} \]
\[\therefore \ P_2 \text{ is true.} \]

(2) If \(P_k \) is true, then the product of \(k \) odd integers is odd.
Let \(p_1, p_2, \ldots, p_k, \) and \(p_{k+1} \) be odd integers.
Then there exist \(q, r \in \mathbb{Z} \) such that \(p_1p_2\ldots p_k = 2q + 1 \) \{using \(P_k \}\)
and \(p_{k+1} = 2r + 1 \)
Now \(p_1p_2\ldots p_kp_{k+1} = (2q + 1)(2r + 1) \)
\[= 4qr + 2q + 2r + 1 \]
\[= 2(2qr + q + r) + 1 \quad \text{which is odd.} \]
\[\therefore \ P_{k+1} \text{ is also true.} \]

Since \(P_2 \) is true, and \(P_{k+1} \) is true whenever \(P_k \) is true,
\(P_n \) is true for all \(n \in \mathbb{Z}, \ n \geq 2 \). \{principle of mathematical induction\}

The following erratum was made on 28/Apr/2020

page 85 EXERCISE 3L, question 3 a ii should read:

3 a i \(\overrightarrow{PC} = \overrightarrow{AP} = r, \ \overrightarrow{DP} = \overrightarrow{PB} = s \)
ii \(\overrightarrow{AB} = \overrightarrow{AP} + \overrightarrow{PB}, \ \overrightarrow{DC} = \overrightarrow{DP} + \overrightarrow{PC} \)
\[= r + s \quad \quad \quad = s + r \]
\[= r + s \]
The following errata were made on 21/Feb/2020

page 136 EXERCISE 4I, question 2 a text alongside second diagram should read:

\[\cos x = 1 \quad \text{when} \]
\[x = 0 \text{ or } 2\pi \]
\[\{0 \leq x \leq 2\pi\} \]

\[\therefore x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}, \text{or } 2\pi. \]

page 137 EXERCISE 4I, question 2 d text alongside diagrams should read:

\[\sin 2x = 0 \quad \text{or} \quad \cos 2x = \frac{1}{2} \]

\[\sin 2x = 0 \quad \text{when} \]
\[2x = 0, \pi, 2\pi, 3\pi, \]
\[\text{or } 4\pi \]
\[\{0 \leq 2x \leq 4\pi\} \]

\[\therefore 2x = 0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}, 2\pi, \frac{7\pi}{4}, 3\pi, \frac{11\pi}{4}, \text{or } 4\pi \]
\[\{0 \leq 2x \leq 4\pi\} \]

page 287 EXERCISE 7G.2, question 3 b last line should read:

\[3 \quad b \quad \mu \left(\frac{z_1}{z_2} \right)^* \quad \text{for } z_2 \neq 0 \quad \text{\{using a\}} \]

The following erratum was made on 12/Jul/2019

page 289 EXERCISE 7G.2, question 8 b does not require \(a \) to not be equal to \(-1\):

\[w \quad \text{is purely imaginary if} \]
\[a^2 - b^2 - 1 = 0 \quad \text{and} \quad 2ab \neq 0 \]

that is, if \(a^2 - b^2 = 1 \)

and neither \(a \) nor \(b \) is zero.